Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier's law of heat conduction: quantum mechanical master equation analysis.

We derive the macroscopic Fourier's Law of heat conduction from the exact gain-loss time convolutionless quantum master equation under three assumptions for the interaction kernel. To second order in the interaction, we show that the first two assumptions are natural results of the long time limit. The third assumption can be satisfied by a family of interactions consisting of an exchange effec...

متن کامل

Reconstruction of the Boundary Condition for the Heat Conduction Equation of Fractional Order

This paper describes reconstruction of the heat transfer coefficient occurring in the boundary condition of the third kind for the time fractional heat conduction equation. Fractional derivative with respect to time, occurring in considered equation, is defined as the Caputo derivative. Additional information for the considered inverse problem is given by the temperature measurements at selecte...

متن کامل

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica A: Statistical Mechanics and its Applications

سال: 2018

ISSN: 0378-4371

DOI: 10.1016/j.physa.2017.11.150